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Abstract. The hydrogen local vibrational modes of ZrH2 and Nb&., were observed by using 
a chopper neutron spectrometer coupled with a pulsed spallation neutron source. From the 
momentum transfer dependence of their modes, it was confirmed that the hydrogen wave 
functions for the first, second and third excited states in ZrH2 are completely harmonic, and 
found that those for E = 220 meV and E = 161 meV in NbHo are very different from simple 
harmonic, although that for the first excited state ( E  = 115 meV) seems to be harmonic. 

1. Introduction 

Measurements of the hydrogen vibrational local modes in metal hydrides [ 1-81 have 
provided important information about the hydrogen potential which strongly depends 
on the chemical and topological environments around a hydrogen atom. In the early 
investigations [5,6], the hydrogen potential was discussed simply in terms of an anhar- 
monic parameter, P. If the shape of the hydrogen potential, V(X),  in a given direction 
X is expressed as V(X)  = A 2 P  + A4X4,  the nth excitation energy, E,, can be approxi- 
mated as E, = nhw + P(n2 + n) ,  with w2 = 2A2/m and P = 3h2A4/4m2w2. The term 
A4X4 shifts the nth excitation energy relative to the harmonic energy, nhw, by the 
amount P(n2 + n). Therefore, the hydrogen potential can be classified according to the 
value of Pinto three types: harmonic ( P = 0), trumpet-like ( p < 0) and well-like ( P  > 0). 
In fact, detailed measurements of the local vibrational modes had been performed, and 
their anharmonic parameters determined, for example, the @-values of TiH, and ZrH, 
were almost zero (harmonic); the p-values of NbH0,31 and TaHo,l were determined 
to be -5 meV and -11 meV, respectively (trumpet-like); the p-value of VH0.33 was 
determined to be +11 meV (well-like) [8]. Recently, a more exact approach for metal 
hydrides NbH and TaH has been taken, assuming that the hydrogen motion is like a 
three-dimensional (3D) anharmonic oscillator, where the x ,  y and z motions of the 
hydrogen are no longer decoupled [7]. A similar approach with some modifications has 
been applied to NbH0,31 and VH0.33, in order to extract the parameters of their hydrogen 
potentials using the measured excitation energies of the local modes [8]. From this 
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Figure 1. T and 0 sites in NbHo,3 (a) and a two-dimensional display of the hydrogen potential 
proposed in [8] (b). 

approach, it was found that the ground state and the first excited state in NbH0,3 can be 
approximately described as harmonic [8]. The hydrogen potential, V(x, y ,  z ) ,  for NbHo,3 
was also derived as 
V(x, y ,  z )  = mw2x2/2 + mw,2y2/2 + m ~ 5 ~ / 2  + ez(x2  - y 2 )  + f x 2 y 2  

where hw, = 147 meV, iiwz = 130 meV, e = 1.246 eV A-4, f = 30.77 eV A-4, g = 
-4.23 eV c,, = 1.373 eV k4, c,, = -3.807 eV k4 and c 6 z  = 2.272 eV A-6. 
However, there were a few assumptions made in this approach: that the potential also 
has minima at the T2 and T3 sites in NbHo,3 (see figure 1); that the calculations are 
performed only considering diagonal terms; and that the wave function can be described 
by linear combinations of harmonic functions. If the actual hydrogen wave functions of 
the ground and excited states are, for example, extremely different from harmonic 
functions, the previous approach should be improved. It is, therefore, required to 
confirm the proposed potential and wave functions by using other approaches. 

The aim of the present work was to observe the momentum transfer dependence (Q- 
dependence) of local vibrational mode intensities in NbHo,3 and ZrH2, and to derive 
the wave functions directly. In the case of an excitation energy S kT, without any 
contribution from the host metal vibration, the inelastic neutron scattering intensity of 
the local modes of a powder sample, I ( Q ,  E , ) ,  is given by the transition probability from 
the initial state (GO(*, exp(iki a x ) )  to the final state (@,(X), exp(ikf . X ) ) ,  where 
exp(iki X )  and exp(ikf * X )  are the wave functions of the incident and scattered neutrons, 
respectively. @&) is the wave function of the ground state and @&) is that of an excited 
state with a transition energy from the ground state of E , .  Since the interaction between 
a neutron and the hydrogen nucleus is given by a constant value (= Vo), I( Q, E , )  can be 
expressed as 

-k g ( X 2  -k y2)Z2  + c4x(X4 y 4 )  C4rZ4 f c6zi‘6 

and 

P(Q, E , )  = E( 1 ]@@(X) e x ~ ( i Q  - X ) @ o ( X )  d x l ’ )  (1) 
v 

where Q = ki - kf and A = No@. NO is the number of hydrogen nuclei in a sample. ( ) 
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indicates averaging over the angle between Q and the direction of motion of the hydro- 
gen. It should be noted that Z(Q, E , )  is explicitly expressed in terms of the wave functions 
of the hydrogen. Therefore, measurements of Z(Q, E,)  make possible a direct inves- 
tigation of the wave functions. In the following sections we report on measurements of 
I( Q ,  E,) for ZrH2 and NbHo,3, and applications of (1) for estimating their wave functions. 

2. Measurements 

Experiments were performed using the chopper neutron spectrometer HET at the 
Rutherford Appleton Laboratory. In the chopper spectrometer, the incident energy Ei 
was fixed and the final energy Ef was determined by the time of flight of the scattered 
neutrons. The energy transfer ( E )  and momentum transfer (fie) at a scattering angle of 
8 were obtained from 

E = Ei - E f  h2Q2 = Ei + Ef -  COS(^). (2) 

In the HET, 10 detector banks were installed in the small-angle region, 3" < 8 < 7", and 
25 detector banks were set up in the large-angle region, 10" < 8 < 30". Therefore, in 
one experiment we could measure Z(Q, E,) ( n  = 1,2,  . . . ) for 35 different values of Q. 
A powder sample of ZrH, was packed into many small holes, each with diameter 1 mm, 
in a boron nitride plate with 1 mm thickness (area 50 x 50 mm2), in order to reduce 
multiple scattering, and fixed in aluminium sample holders. The sample holder was 
cooled down to about 20 K. A powder sample of NbHo,3 was also packed into holes, 
each with a diameter of 3 mm. The incident energy used in both measurements was 
about 630 meV. Each neutron scattering spectrum of ZrH, and NbHo,3 was obtained by 
subtracting the scattering from the sample holder, including the boron nitride plate, 
and normalised using the vanadium scattering intensity. Here no multiple-scattering 
correction was made. 

Figure 2 shows local mode spectra of ZrH2 observed in both the small-angle and 
large-angle regions. The first, second and third excitations were observed at about 147, 
294,441 meV, respectively, consistently with previous measurements [8]. Figure 3 shows 
typical spectra summed over the small-angle ( a )  and large-angle (b )  regions. In this 
figure, it is clear that the intensities of the local modes become larger at larger angles (i.e. 
for higher Q). The neutron scattering intensity Z(Q, E , )  can be given by (ki/kf)i(Q, E , ) /  
q(Ef), where i (Q,  E , )  is the observed intensity of the local mode and r(Ef) the detector 
efficiency. In order to achieve good statistics, the spectra observed at the two detector 
banks were summed, and the i(Q, E , )  ( n  = 1,2,3) were obtained by integrating the 
intensity of each local mode around the peak. Figure 4 shows the measured Z(Q, E , )  for 
ZrH2. Here, the Q are calculated from (2) using the centre energies of the peaks and the 
centre angles of the detector banks. (Note that the scattering intensities for different 
energy levels, Z(Q, E , ) ,  as shown in figure 4 are plotted on the same scale although the 
figure is given in arbitrary units.) In the case of NbHo,3, the local mode spectrum was 
obtained by summing over 10 detector banks in the small-angle region and by summing 
over 5 detector banks in the large-angle region. Figure 5 shows typical raw data obtained 
by this method. One can see three peaks at 115,160 and 220 meV, which correspond to 
the first excitation of the z motion, that of the x and y motions and the second excitation 
of the z motion. The I(  Q ,  E,) of NbHo,3 were obtained by fitting their peaks to Gaussians 
(see figure 5 ) ,  and are shown in figure 6 .  
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Figure 2. Neutron scattering spectra of ZrHz obtained from a chopper spectrometer. The 10 
spectra on the left-hand side of the figure were observed in the small-angle region, and the 
others were observed in the large-angle region. 
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3. Discussion 

Figure 3. Typical spectra of ZrH, obtained at 
small andlarge angles. (a) Spectrumsummedover 
the region 3" < B < 10". ( b )  Spectrum summed 
over the region 27" < 8 < 30". 

At the start of the present approach, we can confirm that the Q-dependence of the local 
modes observed using the neutron scattering spectrometer HET can be completely 
described by (1). We selected a powder sample of ZrH, as the standard sample to be 
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Figure 4. The neutron scattering intensity Z(Q, E,) of ZrH2. Closed circles, open circles and 
open squares show observed values of I (Q,  E,)  for E = 247,294 and 441 meV, respectively. 
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Figure5 Typical spectra of NbHo at small 
and large angles. (a) Spectrum summed 
over the region 3" < 0 < 10". (b)  Spectrum 
summed over the region 27" < 6 < 30". 
Full and broken curves indicate the results 
of the fitting. 

used in this approach. Since the anharmonic parameter /3 of ZrH2 is almost zero and no 
large split in the peaks at E = 147,294 and 441 meV has been observed, the hydrogen 
motion in ZrHz can be considered as being an isotropic harmonic oscillator. Therefore, 
the hydrogen wave functions are described as being of harmonic type, q5ijk(X) = 
Yi(w,, x)Yj(o,, y ) Y k ( o z ,  z ) ,  with a normal vibration of hw (=ho, = hw, = no,) = 
147 meV [8]. In such a simple case, one can easily calculate Ph(Q, E,). The suffix h 
indicates that P ( Q ,  E,) in (1) is calculated using harmonic wave functions. Since the 
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Figure 6. The neutron scattering intensity I (Q,  E,) of NbHo.3. Closed circles, open squares 
andopencirclesshowobservedvaluesofl(Q, E,) for E = 115,161 and220 meV,respectively. 

peaks observed at E = 147, 294 and 441 meV are considered to correspond to the 
transitions from the ground state to i + j + k = 1 , 2  and 3 states, the Q-dependence of 
local modes, I(Q, E , ) ,  can be obtained asAzrPh(Q, E , ) ,  whereAZr is a constant for this 
ZrH2 sample. The Ph(Q, E,)  (n  = 1,2,3) are derived from (1) as follows: 

= 147 meV) = (Q*2/2) e ~ p ( - Q * ~ / 2 )  P h ( Q ,  

P h ( Q ,  = 294meV) = (Q*4/8) e ~ p ( - Q * ~ / 2 )  (3) 

Ph (Q,  = 441 meV) = (Q*6/48) e ~ p ( - Q * ~ / 2 )  

where Q* = Q/LY and LY = v/mo/h. It is remarkable that the Q-dependence of the 
transition probability for the isotropic harmonic oscillator can be scaled by l/a. The 
three full curves in figure 4 indicate AzrPh(Q, E,)  (n  = 1,2 ,3)  calculated with hw = 
147 meV [8] and AZr = 12.5. The consistency between the measured and calculated 
values is very good. This result makes clear that the wave functions for the first, second 
and third excited states in ZrH2 are perfectly harmonic, and strongly indicates that the 
wave function can be directly investigated by measurements of I(Q, E , ) .  

Let us apply this approach to a more general system: NbHo,3. In this case, the three 
peaksobserved at 115,161 and220 meVcorrespondtothe first excitationofthezmotion, 
that of the x and y motion, and the second excitation of the z motion, respectively. The 
results of the previous approach [8] have suggested that the wave functions of the ground 
and excited states can be approximately expressed using harmonic forms, #ijk(X) = 
Yi(ox, x ) Y j ( w x ,  y)Yk(wZ, z ) ,  with two kinds of normal vibration: hwz = 130 meV and 
hco, ( = h w y )  = 147 meV [8]. From (1) we can also derive Ph(Q, E,) for the first, second 
and third excitations of the z motion, and the first excitation of x and y motion. These 
are Ph(Q, E I , ~ ) ,  Ph(Q, ~ 2 , z ) ,  Ph(Q, & 3 , z )  and ph(Q, ~ i , x , y ) :  

Ph(Q, E I , ~ )  = (Q2/2aZ) exp(-A)HIo(~) + I i ( r>)  

Ph(Q,  ~ i , x , y )  = (Q2/2af) ~XP(-A)(IO(Y) - II(Y)) 

Ph(Q,  E Z , ~ )  = (Q4/8a4,) ~ X P ( A ) W O ( Y )  + 2 1 i ( ~ )  + ~ I Z ( Y > )  
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- ( 4 / 4  exp(-y)B(#, s>lF,(#; 3; 2Y)) (4) 

where a, = v s ,  a, = V‘-, y = Q2(4aS - 4a:) and A = Q2(4af + *a:). 
ZJx) ( n  = 0, 1, . . . ) is a modified Bessel function, ,F1 a hypergeometric function and B 
a B-function. In the previous study [8], it was concluded that the wave functions for the 
ground and first excited state of the z motion ( E  = 115 meV) are almost harmonic. 
Therefore, we calculated ANbPh(Q, E ~ , , ) ,  using hw, = 130 m e v  and hw, (=hwy) = 
147 meV obtained in a previous work [8]. The results are shown by a full curve in figure 
6 .  Here, ANb was 36. The consistency between the measured and calculated values is 
fairly good. This means that the ground state and the first excited state of the z motion 
should be represented by harmonic functions. This is perfectly consistent with the 
previous result [8]. ANbPh(Q, E ~ , , , ~ )  and A ~ ~ P ~ ( Q ,  E ~ , ~ )  were also calculated using the 
same values of tiw, ( =hwy), hw, and A,,. These results are shown as full curves in figure 
6. There is a clear difference between the calculated and measured values. This means 
that the wave functions of the excited states are very different from the ‘normal’harmonic 
ones. In order to determine the difference, 0.92ANbPh(Q, E ~ , , , ~ )  and 0.47A,bPh(Q7 ~ 2 , ~ )  

were plotted and are shown in figure 6 as a dotted curve and a broken curve, respectively. 
The consistency between the modified lines and the measured values is good. This result 
can be explained well if the wave functions of the second excited state of the z motion 
and the first excited state of the x ( y )  motion are ‘small’ harmonic functions with two 
normal frequencies of hw, (=nuy) = 147 meV and hw, = 130 meV, but with small 
amplitudes. In the previous study [8], the hydrogen potential of NbHo,3 was classified as 
a trumpet-like potential and numerically estimated as V(x,  y ,  z )  (see figure 1). The 
estimated potential V(0, 0 , z )  is displayed with the energy levels of the ground and 
excited states in figure 7. This figure indicates that the potential deforms at a height of 
about 350 meV (from the bottom) and that excited states higher than E = 161 meV exist 
above 350 meV although the ground state and the first excited state with E = 115 meV 
exist below. Moreover, figure 1 shows that there are saddle points with a height of about 
350 meV (from the bottom) between the TI site and the other T sites. It is, therefore, 
expected that the hydrogen waves for the excited states at energies higher than E = 
161 meV can ‘escape’ from the T I  site to the T2 and T3 sites or, at least, change from 
being harmonic. Assuming a linear combination of one-dimensional harmonic wave 
functions, q i ( x )  = p Y i ( w ,  x )  + qYi (w ,  x - a) ,  we will calculate the Q-dependence of 

Here, p 2  + q2 = 1 and a is the distance between T sites. P,(Q) is expressed as 

= P,(normal)[p2 + q2(1 + a4a2/Q2)  exp( -a2a2/2) 

+ 2pq(cos(aQ/2) - a2a/Q sin(aQ/2)) exp( - a2a2/4)] 
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Figure7. The hydrogen potential andexcitedlevel 
in NbH, S. The full lines of the energy levels indi- 
catethegroundstate(& = 0)andtheexcitedstates 
of the z motion ( E  = 115 and 220 meV), and the 
broken line the excited state of x (y) motion ( E  = 
161 meV). 

Figure 8. Hydrogen wave functions in NbH, 3. (a) 
ground state; (b)  excited state of E = 115 meV; 
( c )  excited state of E = 161 meV; ( d )  excited state 
of E = 220 meV. 

where a = m. Pl(normal) is Q2/2a2 exp(-Q2/2a2), which is the transition prob- 
ability of a normal harmonic oscillator without ‘escape’. If a = 1.155 8, and fio = 
130 meV (in the case of NbHo,3), Pl(Q) can be approximated as 

Pl(Q) = Pl(normal)p2(1 + 0(10-’)) (for Q > 1 A-1). (6) 
Generally, a relation similar to (6) can be obtained for Pi(Q) (i = 2,3, . . . . ). It indicates 
that the probability of transition to an excited state, q i ( x )  = pYi(o,  x )  + qYi(o, x - a) ,  
has a Q-dependence analogous to that of the normal case, although the amplitude is 
decreased by a factor p2. This feature is just that of I(Q, E = 160 meV) and Z(Q, E = 
220 meV) observed for NbHo.,. It may therefore be reasonable to define the excited 
states due to E = 160 and 220meV, qt(X) (and q{(X)) and q$(X), by 
p@&) + qGijk(X - X, )  + qGVk(X - X,), where p2 + 2q2 = 1 and X2 and X ,  are the 
coordinates of the T, and T3 sites. Since the values obtained for p2 for E = 160 and 
220 meV are 0.92 and 0.47, respectively, their wave functions should be described as 

and 
qt(11) = 0.96@im(X) + 0.2@100(x-xz) +0~2@~oo(X-x3)  

V $ ( X )  =0.69@00z(x) +0.51@002(X-x2) +0.51@00z(X-x3) (7) 
where @ijk(X) = yli(mx, x ) y j ( m y ,  ~)W,(oz, 21, @ijk(X- XZ) = y i ( m x ,  2 - b ) y j ( o y ,  Y )  
Y k ( m z ,  x - b)  and c$ijk(X - X,) = Y i ( w x ,  - z  - b)Yj (wy ,  y)Yk(oz, -x  - b). 
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Here, 6 is 0.825 A. The proposed hydrogen wave functions on the x = 0 plane are 
shown in figure 8. From these proposed wave functions, the same values as for the dotted 
and broken curves shown in figure 6 can also be obtained. These results indicate that it 
is possible to propose (7)  as the wave function for E = 161 and 220 meV. Note that the 
value of p in rp;(X) is approximately 1. That the wave function for E = 161 meV is 
approximately harmonic is not so very different from the previous result [8]. Sugimoto 
and Fukai [9] assumed a double Born-Mayer potential and calculated the wave functions 
for the ground and excited states (Yo, Y; and Y i  in [9]) by the method of Kimball and 
Shortley [lo]. Their results (figure 3(a) and (6) in [9]) also show that the small portion 
of the hydrogen wave corresponding to E = 161 meV exists at the neighbouring pair of 
T sites, although the ground state and the first excited state corresponding to E = 
115 meV are completely localised at the original T site. The feature of ‘escape’ at E = 
161 meV estimated by the present measurement corresponds to their result very well. 

Since the wave functions for E = 220 meV, unfortunately, have not been explicitly 
discussed, we cannot here compare our result with the others. Note that the wave 
functions for E = 220 meV are still not identified exactly by the present measurements. 
For example, if rp,4(X) is given by a ‘mixture’ state r@oo2(X) + S @ ~ ~ ( X ) ,  Z(Q, E ,  = 
220 meV) should be expressed as r2AN,Ph(Q, E ~ , ~ )  + s2ANbPh(Q, ~ 3 , ~ ) ,  where r2 + s2 = 
1. The chain curve in figure 6 shows calculated values for the case where r2 = 0.3. In 
order to identify it exactly, one must observe the Q-dependence in a wider Q-range, for 
example, 1 < Q < 12 A-’ (see figure 6). However, the present measurement at least 
suggests that the wave function for E = 220 meV is very different from the simple 
harmonic wave function, and that it should be calculated by a more exact method. 

Generally, if one wants to obtain exact wave functions from the local mode spectrum, 
one must observe many local mode peaks, assume a very complicated potential with 
many parameters and calculate the energy levels with a large linear combination of the 
harmonic wave functions. Since the wave functions are indirectly determined under the 
many assumptions used in this procedure, it seems difficult to investigate their exact 
features. In principle, our present approach makes a direct investigation of the wave 
function possible. This point is a big advantage and the best use of this may be in 
ascertaining whether the wave functions proposed on the basis of other experimental 
results and theories are appropriate or not. 

In this paper we reported on the Q-dependence of local modes, confirmed that the 
hydrogen wave functions for the first, second and third excited states in ZrH2 are 
completely harmonic, and proposed for the first time the wave functions due to the 
higher excited state of NbHo.3. Our results suggest that the measurement of the Q- 
dependence is very useful for confirmation or estimation of wave functions. 
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